Journal Article
Review
Add like
Add dislike
Add to saved papers

Drugging the undruggable: gabapentin, pregabalin and the calcium channel α2δ subunit.

In the post-genomic era, the idea of using the sequence of a protein to determine its potential role as a drug target has gained currency. The goal of this approach to drug discovery is to use the sequence of a protein that is known to bind a specific ligand or drug, along with the known structure of the ligand binding site, to predict other similar proteins that are also "druggable". Gabapentin (Neurontin) and pregabalin (Lyrica) are drugs currently in the clinic that were developed based on the hypothesis that generating non-hydrolyzable analogs of GABA would lead to the development of antiepileptic agents. While these compounds are indeed good anticonvulsants, their activity is surprisingly not due to activity in the GABAergic system. By purifying the protein to which gabapentin bound, and determining its identity as the α2δ1 subunit of voltage gated calcium channels, it was possible to make progress in developing new compounds with similar activities to gabapentin, including pregabalin. The recognition of the α2δ1 subunit as the receptor for these drugs also meant that related proteins, such as α2δ3, may be interesting targets for novel pain therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app