Add like
Add dislike
Add to saved papers

Nonlinear regression on Riemannian manifolds and its applications to Neuro-image analysis.

Regression in its most common form where independent and dependent variables are in ℝ (n) is a ubiquitous tool in Sciences and Engineering. Recent advances in Medical Imaging has lead to a wide spread availability of manifold-valued data leading to problems where the independent variables are manifold-valued and dependent are real-valued or vice-versa. The most common method of regression on a manifold is the geodesic regression, which is the counterpart of linear regression in Euclidean space. Often, the relation between the variables is highly complex, and existing most commonly used geodesic regression can prove to be inaccurate. Thus, it is necessary to resort to a non-linear model for regression. In this work we present a novel Kernel based non-linear regression method when the mapping to be estimated is either from M → ℝ (n) or ℝ (n) → M, where M is a Riemannian manifold. A key advantage of this approach is that there is no requirement for the manifold-valued data to necessarily inherit an ordering from the data in ℝ (n) . We present several synthetic and real data experiments along with comparisons to the state-of-the-art geodesic regression method in literature and thus validating the effectiveness of the proposed algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app