Add like
Add dislike
Add to saved papers

Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.

Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s-1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s-1 is significantly larger than at SR = 1000 s-1 (13.8%, p < 0.001). Doppler ultrasound (DUS) was used to measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s-1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re < 2200. However, differences were observed between blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806 ± 109. Overall, the critical Re was delayed by ∼20% (p < 0.001) for blood compared to the Newtonian fluid. Thus, a Newtonian assumption for blood at flow conditions near transition could lead to large errors in velocity prediction for steady flow in a straight pipe. However, these results are specific to this pipe diameter and not generalizable since SR is highly dependent on pipe diameter. Further research is necessary to understand this relation in different pipe sizes, more complex geometries, and under pulsatile flow conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app