JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides.

Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app