JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.

Lactose permease of E. coli (LacY) is a secondary active transporter (SAT) that belongs to the major facilitator superfamily (MFS). Experimental structures of the cytoplasmic-open and more recently occluded-like structure have been determined, however, the crystal structure of LacY in the periplasmic-open state is still not available. The periplasmic-open LacY structure is important for understanding complete proton/sugar transport process of LacY as well as other similar SAT proteins. Previously, a structural model of periplasmic-open LacY has been obtained through a two-step hybrid implicit-explicit (IM-EX) simulation method (JMB404: 506). Molecular dynamics simulations are performed to further test the IM-EX model for the periplasmic-open LacY with ββ-(Galp)2 in a lipid membrane. The comparison of the calculated pore radii to the data of the crystal structure indicates that the IM-EX model of LacY remains periplasmic-open in E269-protonated states. The neighbor residue distance change based on Cα are very similar in simulation results, but they are significantly different in double electron-electron resonance (DEER) experimental data, which motivates us to perform the molecular dynamics dummy spin-label (MDDS) simulations to test the effect of spin labels (size and internal flexibility) on DEER spin label distance measurements. The MDDS simulation results show that the orientation and movement of the spin labels significantly affect the residue pair distance measurement. DEER data alone may not provide an accurate guide for predicting protein structures. MDDS simulations can be applied to analyze the distance distribution due to spin labels and also aid in proper interpretation of DEER experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app