JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blockade of Glucocorticoid-Induced Tumor Necrosis Factor-Receptor-Related Protein Signaling Ameliorates Murine Collagen-Induced Arthritis by Modulating Follicular Helper T Cells.

Recent studies have shown that glucocorticoid-induced tumor necrosis factor-receptor-related protein (GITR) and its ligand (GITRL) are critically involved in the pathogenesis of autoimmune arthritis, but the role of GITRL/GITR signaling in modulating CD4(+) follicular helper T (Tfh) cell response during autoimmune arthritis remains largely unclear. We showed that splenic Tfh cells from mice with collagen-induced arthritis expressed higher levels of GITR compared with non-Tfh cells. In vitro, GITRL treatment markedly enhanced the percentage and number of Tfh cells. The administration of GITR fused to fragment crystallizable of IgG protein in mice with collagen-induced arthritis suppressed the Tfh cell response, resulting in ameliorated disease severity, and reduced production of autoantibody and the number of autoantibody-secreting cells in both the spleen and bone marrow. Together, these results indicate that blockade of GITR signaling can ameliorate arthritis progression mainly by modulating the Tfh cell response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app