Add like
Add dislike
Add to saved papers

A computerized volumetric segmentation method applicable to multi-centre MRI data to support computer-aided breast tissue analysis, density assessment and lesion localization.

Density assessment and lesion localization in breast MRI require accurate segmentation of breast tissues. A fast, computerized algorithm for volumetric breast segmentation, suitable for multi-centre data, has been developed, employing 3D bias-corrected fuzzy c-means clustering and morphological operations. The full breast extent is determined on T1-weighted images without prior information concerning breast anatomy. Left and right breasts are identified separately using automatic detection of the midsternum. Statistical analysis of breast volumes from eighty-two women scanned in a UK multi-centre study of MRI screening shows that the segmentation algorithm performs well when compared with manually corrected segmentation, with high relative overlap (RO), high true-positive volume fraction (TPVF) and low false-positive volume fraction (FPVF), and has an overall performance of RO 0.94 ± 0.05, TPVF 0.97 ± 0.03 and FPVF 0.04 ± 0.06, respectively (training: 0.93 ± 0.05, 0.97 ± 0.03 and 0.04 ± 0.06; test: 0.94 ± 0.05, 0.98 ± 0.02 and 0.05 ± 0.07).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app