Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The hemodynamic effects of acute aortic regurgitation into a stiffened left ventricle resulting from chronic aortic stenosis.

Acute aortic regurgitation (AR) post-chronic aortic stenosis is a prevalent phenomenon occurring in patients who undergo transcatheter aortic valve replacement (TAVR) surgery. The objective of this work was to characterize the effects of left ventricular diastolic stiffness (LVDS) and AR severity on LV performance. Three LVDS models were inserted into a physiological left heart simulator. AR severity was parametrically varied through four levels (ranging from trace to moderate) and compared with a competent aortic valve. Hemodynamic metrics such as average diastolic pressures (DP) and reduction in transmitral flow were measured. AR index was calculated as a function of AR severity and LVDS, and the work required to make up for lost volume due to AR was estimated. In the presence of trace AR, higher LVDS had up to a threefold reduction in transmitral flow (13% compared with 3.5%) and a significant increase in DP (2-fold). The AR index ranged from ∼42 to 16 (no AR to moderate AR), with stiffer LVs having lower values. To compensate for lost volume due to AR, the low, medium, and high LVDS models were found to require 5.1, 5.5, and 6.6 times more work, respectively. This work shows that the LVDS has a significant effect on the LV performance in the presence of AR. Therefore, the LVDS of potential TAVR patients should be assessed to gain an initial indication of their ability to tolerate post-procedural AR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app