Add like
Add dislike
Add to saved papers

Optimizing the macrocyclic diterpenic core toward the reversal of multidrug resistance in cancer.

BACKGROUND: From a dataset obtained by chemical derivatization of a macrocyclic diterpenic scaffold, in silico approaches identified which structural features correlate with experimental modulation of P-gp activity. Results/methodology: Ninety-two percent of the strongest MDR modulators were positively identified within the dataset by virtual screening. Quantitative structure-activity relationships models with high robustness and predictability were obtained for both MDR1-transfected L5178Y mouse lymphoma T-cells (q(2) 0.875, R(2) pred 0.921) and human colon adenocarcinoma (q(2) 0.820, R(2) pred 0.951) cell lines. A new pharmacophoric model suggests that charge distribution within the molecule is important for biological activity.

CONCLUSION: For the studied diterpenes, the conformation of the macrocyclic scaffold and its substitution pattern are the main determinants for the biological activity, being related with steric and electrostatic factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app