Add like
Add dislike
Add to saved papers

Comparison of Mechanical Allodynia and Recovery of Locomotion and Bladder Function by Different Parameters of Low Thoracic Spinal Contusion Injury in Rats.

BACKGROUND: The present study was designed to examine the functional recovery following spinal cord injury (SCI) by adjusting the parameters of impact force and dwell-time using the Infinite Horizon (IH) impactor device.

METHODS: Sprague-Dawley rats (225-240 g) were divided into eight injury groups based on force of injury (Kdyn) and dwell time (seconds), indicated as Force-Dwell time: 150-4, 150-3, 150-2, 150-1, 150-0, 200-0, 90-2 and sham controls, respectively.

RESULTS: After T10 SCI, higher injury force produced greater spinal cord displacement (P < 0.05) and showed a significant correlation (r = 0.813) between the displacement and the force (P < 0.05). In neuropathic pain-like behavior, the percent of paw withdrawals scores in the hindpaw for the 150-4, 150-3, 150-2, 150-1 and the 200-0 injury groups were significantly lowered compared with sham controls (P < 0.05). The recovery of locomotion had a significant within-subjects effect of time (P < 0.05) and the 150-0 group had increased recovery compared to other groups (P < 0.05). In addition, the 200-0 and the 90-2 recovered significantly better than all the 150 kdyn impact groups that included a dwell-time (P < 0.05). In recovery of spontaneous bladder function, the 150-4 injury group took significantly longer recovery time whereas the 150-0 and the 90-2 groups had the shortest recovery times.

CONCLUSIONS: The present study demonstrates SCI parameters optimize development of mechanical allodynia and other pathological outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app