Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prior renovascular hypertension does not predispose to atherosclerosis in mice.

Atherosclerosis 2016 June
BACKGROUND: Hypertension is a major risk factor for development of atherosclerotic cardiovascular disease (ASCVD). Although lowering blood pressure with antihypertensive drugs reduces the increased risk of ASCVD, residual increased risk still remains, suggesting that hypertension may cause chronic changes that promote atherosclerosis. Thus, we tested the hypothesis that hypertension increases the susceptibility to atherosclerosis in mice even after a period of re-established normotension.

METHODS: We used the 2-kidney, 1-clip (2K1C) technique to induce angiotensin-driven renovascular hypertension, and overexpression of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene to cause severe hypercholesterolemia and atherosclerosis.

RESULTS: First, we performed 2K1C (n = 8) or sham surgery (n = 9) in PCSK9 transgenic mice before they were fed a high fat diet for 14 weeks. As expected, 2K1C did not affect cholesterol levels, but induced cardiac hypertrophy and significantly increased the atherosclerotic lesion area compared to sham mice (1.8 fold, p < 0.01). Next, we performed 2K1C (n = 13) or sham surgery (n = 14) in wild-type mice but removed the clipped/sham-operated kidney after 10 weeks to eliminate hypertension, and subsequently induced hypercholesterolemia by way of adeno-associated virus-mediated hepatic gene transfer of PCSK9 combined with high-fat diet. After 14 weeks of hypercholesterolemia, atherosclerotic lesion areas were not significantly different in mice with or without prior 2K1C hypertension (0.95 fold, p = 0.35).

CONCLUSION: Renovascular hypertension in mice does not induce pro-atherogenic changes that persist beyond the hypertensive phase. These results indicate that hypertension only promotes atherogenesis when coinciding temporally with hypercholesterolemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app