Add like
Add dislike
Add to saved papers

Photo-thermal therapy of bladder cancer with Anti-EGFR antibody conjugated gold nanoparticles.

The aim of this study was to enhance the effectiveness of photo thermal therapy (PTT) in the targeting of superficial bladder cancers using a green light laser in conjunction with gold nanoparticles (GNPs) conjugated to antibody fragments (anti-EGFR). GNPs conjugated with anti-EGFR-antibody fragments were used as probes in the targeting of tumor cells and then exposed to a green laser (532nm), resulting in the production of sufficient thermal energy to kill urothelial carcinomas both in vitro and in vivo. Nanoparticles conjugated with antibody fragments are capable of damaging cancer cells even at relatively very low energy levels, while non-conjugated nanoparticles would require an energy level of 3 times under the same conditions. The lower energy required by the nanoparticles allows this method to destroy cancerous cells while preserving normal cells when applied in vivo. Nanoparticles conjugated with antibody fragments (anti-EGFR) require less than half the energy of non-conjugated nanoparticles to kill cancer cells. In an orthotopic bladder cancer model, the group treated using PTT presented significant differences in tumor development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app