Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability.

BACKGROUND: Two-pore K(+) channels have emerged as potential targets to selectively regulate cardiac cell membrane excitability; however, lack of specific inhibitors and relevant animal models has impeded the effort to understand the role of 2-pore K(+) channels in the heart and their potential as a therapeutic target. The objective of this study was to determine the role of mechanosensitive 2-pore K(+) channel family member TREK-1 in control of cardiac excitability.

METHODS AND RESULTS: Cardiac-specific TREK-1-deficient mice (αMHC-Kcnk(f/f)) were generated and found to have a prevalent sinoatrial phenotype characterized by bradycardia with frequent episodes of sinus pause following stress. Action potential measurements from isolated αMHC-Kcnk2(f/f) sinoatrial node cells demonstrated decreased background K(+) current and abnormal sinoatrial cell membrane excitability. To identify novel pathways for regulating TREK-1 activity and sinoatrial node excitability, mice expressing a truncated allele of the TREK-1-associated cytoskeletal protein βIV-spectrin (qv(4J) mice) were analyzed and found to display defects in cell electrophysiology as well as loss of normal TREK-1 membrane localization. Finally, the βIV-spectrin/TREK-1 complex was found to be downregulated in the right atrium from a canine model of sinoatrial node dysfunction and in human cardiac disease.

CONCLUSIONS: These findings identify a TREK-1-dependent pathway essential for normal sinoatrial node cell excitability that serves as a potential target for selectively regulating sinoatrial node cell function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app