JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Effect of polyphenols on glucose and lactate transport by breast cancer cells.

One of the cancer molecular hallmarks is a deviant energetic metabolism, known as the Warburg effect, whereby the rate of glucose uptake is significantly increased and a high rate of glycolysis and lactic acid production occurs even when oxygen is present-"aerobic lactatogenesis". Accordingly, GLUT1 and MCT1, which are the main glucose and lactate transporters in cancer cells, respectively, have been proposed as oncogenes and are currently seen as potential therapeutic targets in cancer treatment. Polyphenols, commonly contained in fruits and vegetables, have long been associated with a protective role against cancer. Generally considered as nontoxic, dietary polyphenols are considered ideal chemopreventive and possibly chemotherapeutic agents. Several mechanisms of action of polyphenols in breast cancer cells have been proposed including modulation of intracellular signaling, induction of apoptosis through redox regulation or modulation of epigenetic alterations. Additionally, in vitro studies have shown that several polyphenols act as specific inhibitors of glucose transport in breast cancer cell lines and an association between their anticarcinogenic effect and inhibition of glucose cellular uptake has been described. Also, some polyphenols were found to inhibit lactate transport. Importantly, some polyphenols behave as inhibitors of both glucose and lactate cellular uptake by breast cancer cells and these compounds are thus very interesting in the context of a chemopreventive effect, because they deplete breast cancer cells of their two most important energy suppliers. So, the antimetabolic effect of polyphenols should be regarded as a mechanism of action contributing to their chemopreventive/chemotherapeutic potential in relation to breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app