JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preparation and Preclinical Evaluation of Inhalable Particles Containing Rapamycin and Anti-Tuberculosis Agents for Induction of Autophagy.

PURPOSE: Mycobacterium tuberculosis (Mtb) inhibits host defense mechanisms, including autophagy. We investigated particles containing rapamycin (RAP) alone or in combination with isoniazid (INH) and rifabutin (RFB) for: targeting lung macrophages on inhalation; inducing autophagy; and killing macrophage-resident Mtb and/or augmenting anti-tuberculosis (TB) drugs.

METHODS: PLGA and drugs were spray-dried. Pharmacokinetics, partial biodistribution (LC-MS/MS) and efficacy (colony forming units, qPCR, acid fast staining, histopathology) in mice following dry powder inhalation were evaluated.

RESULTS: Aerodynamic diameters of formulations were 0.7-4.7 μm. Inhaled particles reached deep lungs and were phagocytosed by alveolar macrophages, yielding AUC0-48 of 102 compared to 0.1 μg/ml × h obtained with equivalent intravenous dose. RAP particles induced more autophagy in Mtb-infected macrophages than solutions. Inhaled particles containing RAP alone in daily, alternate-day and weekly dosing regimens reduced bacterial burden in lungs and spleens, inducing autophagy and phagosome-lysosome fusion. Inhalation of particles containing RAP with INH and RFB cleared the lungs and spleens of culturable bacteria.

CONCLUSIONS: Targeting a potent autophagy-inducing agent to airway and lung macrophages alone is feasible, but not sufficient to eliminate Mtb. Combination of macrophage-targeted inhaled RAP with classical anti-TB drugs contributes to restoring tissue architecture and killing Mtb.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app