JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities.

Understanding and controlling biological phenomena via structure-based drug screening efforts often critically rely on accurate description of protein-ligand interactions. However, most of the currently available computational techniques are affected by severe deficiencies in both protein and ligand conformational sampling as well as in the scoring of the obtained docking solutions. To overcome these limitations, we have recently developed MedusaDock, a novel docking methodology, which simultaneously models ligand and receptor flexibility. Coupled with MedusaScore, a physical force field-based scoring function that accounts for the protein-ligand interaction energy, MedusaDock, has reported the highest success rate in the CSAR 2011 exercise. Here, we present a standard computational protocol to evaluate the binding properties of the two enantiomers of the non-selective β-blocker propanolol in the β2 adrenergic receptor's binding site. We describe details of our protocol, which have been successfully applied to several other targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app