JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise.

NEW FINDINGS: What is the central question of this study? The cardiopulmonary baroreflex inhibits adjustment of sympathetic vasomotor outflow during mild-intensity dynamic exercise. However, it is unclear how suppression of sympathetic vasomotor outflow by the cardiopulmonary baroreflex is modulated by a powerful sympatho-excitatory drive from the exercise pressor reflex, central command and/or the arterial chemoreflex. What is the main finding and its importance? Hypoxia-induced heightened sympathetic nerve activity during dynamic exercise attenuated cardiopulmonary baroreflex control of sympathetic vasomotor outflow. This could facilitate the redistribution of blood flow to the active muscles by sympathetically mediated vasoconstriction of inactive muscles. Muscle sympathetic nerve activity (MSNA) does not increase during mild-intensity dynamic leg exercise in normoxic conditions, despite activation of central command and the exercise pressor reflex. Suppression of MSNA could be caused by muscle pump-induced loading of cardiopulmonary baroreceptors. In contrast, MSNA increases during mild dynamic leg exercise in hypoxic conditions. We hypothesized that hypoxic exercise, which induces a powerful sympatho-excitatory drive from the exercise pressor reflex, central command and/or arterial chemoreflex, attenuates cardiopulmonary reflex control of sympathetic vasomotor outflow. To test this hypothesis, MSNA was recorded during leg cycling in hypoxic conditions and with increased central blood volume by increasing the pedalling frequency to change the cardiopulmonary baroreflex. Subjects performed two leg cycle exercises at different pedal cadences of 60 and 80 r.p.m. (60EX and 80EX trials, respectively) in two (haemodynamic and MSNA) measurement conditions while breathing a hypoxic gas mixture (inspired oxygen fraction = 0.12). Thoracic impedance, stroke volume and cardiac output were measured non-invasively using impedance cardiography. During the MSNA test, MSNA was recorded via microneurography at the right median nerve at the elbow. Changes in thoracic impedance, stroke volume and cardiac output during the 80EX trial were greater than those during the 60EX trial. The MSNA burst frequency during hypoxic exercise in the 80EX trial (39 ± 4 bursts min(-1)) did not differ from that during the 60EX trial (39 ± 3 bursts min(-1)). These results suggest that the cardiopulmonary baroreflex of sympathetic vasomotor outflow during dynamic exercise is modulated by heightened hypoxia-induced sympathetic nerve activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app