JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process.

Electrospray ionization (ESI) allows the production of intact gas-phase ions from proteins in solution. Nondenaturing solvent conditions usually culminate in low ESI charge states. However, many mass spectrometric applications benefit from protein ions that are more highly charged. One way to boost protein charge is the addition of supercharging agents (SCAs) such as sulfolane or m-nitrobenzyl alcohol (m-NBA) to the aqueous solution. The supercharging mechanism remains controversial. We use molecular dynamics (MD) simulations to examine how SCAs affect the behavior of ESI nanodroplets. Simulations were conducted on myoglobin in water, water/sulfolane, and water/m-NBA. Na(+) ions served as surrogate charge carriers instead of H(+). We focus on conditions where the protein initially adopts its native conformation. MD-generated charge states show remarkable agreement with experimental data. Droplet shrinkage is accompanied by Na(+) ejection, consistent with the ion evaporation model (IEM). The droplets segregate into an outer SCA shell and an aqueous core. This core harbors protein and Na(+). Unfavorable SCA solvation restricts Na(+) access to the droplet surface, thereby impeding IEM ejection. Rapid water loss causes SCA enrichment, ultimately forcing all remaining Na(+) to bind the protein. IEM ejection is no longer feasible after this point, such that the protein becomes supercharged by Na(+) trapping. SCA-free droplets produce lower charge states because the aqueous environment ensures a higher IEM efficiency. For all scenarios examined here, proteins are released via solvent evaporation to dryness, as envisioned by the charged residue model. Our data provide the first atomistic view of the supercharging mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app