Add like
Add dislike
Add to saved papers

AKT2 Promotes Bone Marrow Cell-Mediated Aortic Protection in Mice.

BACKGROUND: Insufficient aortic protection and repair may contribute to the development of aortic aneurysms and dissections (AAD). However, mechanisms of aortic protection and repair are poorly understood. We have shown that the multifunctional kinase AKT2 plays an important role in protecting the aortic wall. Here, we examined whether AKT2 protects against AAD by promoting bone marrow cell (BMC)-mediated aortic protection.

METHODS: Irradiated wild-type mice received green fluorescent protein-expressing BMCs from wild-type mice or Akt2(-/-) mice, followed by challenge with angiotensin II (1000 ng/kg/min) infusion for 4 weeks. We compared BMC recruitment, aortic destruction, and AAD development between groups. The direct effects of wild-type and Akt2(-/-) BMCs on smooth muscle cell survival were examined in coculture experiments.

RESULTS: After angiotensin II infusion, no (0 of 14) wild-type BMC recipients had AAD; in contrast, 64% (9 of 14) of Akt2(-/-) BMC recipients had AAD (p = 0.002) with severe aortic destruction. Compared with aortas from challenged wild-type BMC recipients, aortas from challenged Akt2(-/-) BMC recipients showed significantly less BMC recruitment, NG2 (neuron-glial antigen 2) progenitor activation, and FSP1 (fibroblast-specific protein 1) fibroblast activation. In addition, aortas from challenged Akt2(-/-) BMC recipients showed increased apoptosis and inflammation. In coculture experiments, wild-type but not Akt2(-/-) BMCs prevented smooth muscle cells from undergoing oxidative stress-induced apoptosis.

CONCLUSIONS: After aortic challenge, BMCs are recruited to the aortic wall and provide protection by activating progenitors and fibroblasts and by promoting aortic cell survival. Our findings indicate that AKT2 is involved in these processes and that defects in this pathway may promote progressive degeneration during AAD development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app