Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photothermally Triggered Lipid Bilayer Phase Transition and Drug Release from Gold Nanorod and Indocyanine Green Encapsulated Liposomes.

In light-activated liposomal drug delivery systems (DDSs), the light sensitivity can be obtained by a photothermal agent that converts light energy into heat. Excess heat increases the drug permeability of the lipid bilayer, and drug is released as a result. In this work, two near-IR responsive photothermal agents in a model drug delivery system are studied: either gold nanorods (GNRs) encapsulated inside the liposomes or indocyanine green (ICG) embedded into the lipid bilayer. The liposome system is exposed to light, and the heating effect is studied with fluorescent thermometers: laurdan and CdSe quantum dots (QDs). Both photothermal agents are shown to convert light into heat in an extent to cause a phase transition in the surrounding lipid bilayer. This phase transition is also proven with laurdan generalized polarization (GP). In addition to the heating results, we show that the model drug (calcein) is released from the liposomal cavity with both photothermal agents when the light power is sufficient to cause a phase transition in the lipid bilayer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app