Add like
Add dislike
Add to saved papers

Modulation of l-α-lysophosphatidylinositol/GPR55 MAP kinase signalling by CB2 receptor agonists: identifying novel GPR55 inhibitors.

BACKGROUND: GPR55 is a lipid-sensing G protein-coupled receptor that is activated by the endogenous lipid l-α-lysophosphatidylinositol (LPI) and can be modulated by certain cannabinoid ligands.

METHODS: In this study we investigated the GPR55 activity of four synthetic CB2 receptor agonists using the AlphaScreen® SureFire® assay.

RESULTS: Here we show that the CB2 receptor-selective agonists HU-308, HU-433 and HU-910 do not promote GPR55-mediated ERK1/2 phosphorylation up to a concentration of 3 μM. However, LPI-induced ERK1/2 phosphorylation is inhibited by the (-)-enantiomer of HU-308, designated HU-433, whereas HU-308 has no effect on LPI activity. The carboxylic analogue of HU-910, designated HU-914, potently inhibits LPI-induced ERK1/2 phosphorylation; however, HU-914 was less effective, with potential biphasic effects.

CONCLUSIONS: This structure-activity-relationship study has identified novel ligands which act both as CB2 receptor agonists and GPR55 modulators and related compounds that lack GPR55 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app