JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of a Low-Cost Arduino-Based Sonde for Coastal Applications.

Sensors 2016
This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde design was intended for use on a Lagrangian style surface drifter that recorded measurements of temperature; salinity; and position for a deployment duration of less than 24 h. Functional testing of the sensor consisted of a 55 h comparison with a regularly maintained water quality sensor (i.e., YSI 6600 sonde) in Mobile Bay, AL. The temperature and salinity data were highly correlated and had acceptable RMS errors of 0.154 °C and 1.35 psu for the environmental conditions. A second application using the sonde platform was designed for longer duration (~3-4 weeks); subsurface (1.5-4.0 m depths) deployment, moored to permanent structures. Design alterations reflected an emphasis on minimizing power consumption, which included the elimination of the GPS capabilities, increased battery capacity, and power-saving software modifications. The sonde designs presented serve as templates that will expand the hydrographic measurement capabilities of ocean scientists, students, and teachers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app