Journal Article
Review
Add like
Add dislike
Add to saved papers

Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.

Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app