Add like
Add dislike
Add to saved papers

Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition.

OBJECTIVE: To investigate the effect of collagen cross-links on the stability of adhesive properties, the degree of conversion within the hybrid layer, cytotoxicity and the inhibition potential of the MMPs' activity.

METHODS: The dentin surfaces of human molars were acid-etched and treated with primers containing: 6.5wt% proanthocyanidin, UVA-activated 0.1wt% riboflavin, 5wt% glutaraldehyde and distilled water for 60s. Following, dentin was bonded with Adper Single Bond Plus and Tetric N-Bond; and restored with resin composite. The samples were sectioned into resin-dentin "sticks" and tested for microtensile bond strength (μTBS) after immediate (IM) and 18-month (18M) periods. Bonded sticks at each period were used to evaluate nanoleakage and the degree of conversion (DC) under micro-Raman spectroscopy. The enzimatic activity (P1L10 cross-linkers, P1L22 MMPs' activities) in the hybrid layer was evaluated under confocal microscopy. The culture cell (NIH 3T3 fibroblast cell line) and MTT assay were performed to transdentinal cytotoxicity evaluation. Data from all tests were submitted to appropriate statistical analysis (α=0.05).

RESULTS: All cross-linking primers reduced the degradation of μTBS compared with the control group after 18M (p>0.05). The DC was not affected (p>0.213). The NL increased after 18M for all experimental groups, except for proanthocyanidin with Single Bond Plus (p>0.05). All of the cross-link agents reduced the MMPs' activity, although this inhibition was more pronounced by PA. The cytotoxicity assay revealed reduced cell viability only for glutaraldehyde (p<0.001).

SIGNIFICANCE: Cross-linking primers used in clinically relevant minimized the time degradation of the μTBS without jeopardizing the adhesive polymerization, as well as reduced the collagenolytic activity of MMPs. Glutaraldeyde reduced cell viability significantly and should be avoided for clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app