Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Assessment of human platelet survival in the NOD/SCID mouse model: technical considerations.

Transfusion 2016 June
BACKGROUND: The NOD/SCID mouse model is a unique and sophisticated method to study the survival of human platelets (PLTs) in vivo. Meanwhile, several research groups adopted this model to analyze a wide range of PLT antibodies. Differences exist between the research groups regarding the method of PLT injection, the amount and route of antibody injection, and the preparation of blood samples collected from the animal, making it difficult to compare results between studies.

STUDY DESIGN AND METHODS: We compared the survival of human PLTs infused into NOD/SCID mice via the tail vein or the retro-orbital plexus. The percentage of circulating human PLTs in the mouse circulation was determined by flow cytometry. Murine blood samples were prepared using two different methods: 1) direct fixation of whole blood samples and 2) isolation of PLTs by density gradient centrifugation.

RESULTS: Recovery of human PLTs after tail vein injection was comparable to retro-orbital injection (13% vs. 11% of all circulating PLTs, p = 0.401). However, the survival rate of tail vein-infused PLTs was higher than that of retro-orbitally injected PLTs (median PLT survival after 5 hr 84% vs. 56%, p = 0.025). Moreover, we observed that determination of circulating human PLTs in directly fixed murine whole blood samples shows better reproducibility compared to the density gradient centrifugation method.

CONCLUSIONS: Tail vein injection of human PLTs into the NOD/SCID mice is superior to retro-orbital injection in terms of human PLT survival. Direct fixation of whole blood samples allows better reproducibility of results compared to the density gradient centrifugation method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app