Add like
Add dislike
Add to saved papers

In vivo behavior of NTBI revealed by automated quantification system.

Non-Tf-bound iron (NTBI), which appears in serum in iron overload, is thought to contribute to organ damage; the monitoring of serum NTBI levels may therefore be clinically useful in iron-overloaded patients. However, NTBI quantification methods remain complex, limiting their use in clinical practice. To overcome the technical difficulties often encountered, we recently developed a novel automated NTBI quantification system capable of measuring large numbers of samples. In the present study, we investigated the in vivo behavior of NTBI in human and animal serum using this newly established automated system. Average NTBI in healthy volunteers was 0.44 ± 0.076 μM (median 0.45 μM, range 0.28-0.66 μM), with no significant difference between sexes. Additionally, serum NTBI rapidly increased after iron loading, followed by a sudden disappearance. NTBI levels also decreased in inflammation. The results indicate that NTBI is a unique marker of iron metabolism, unlike other markers of iron metabolism, such as serum ferritin. Our new automated NTBI quantification method may help to reveal the clinical significance of NTBI and contribute to our understanding of iron overload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app