Add like
Add dislike
Add to saved papers

The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells.

Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun nanofibrous membrane exposed high cell proliferation and also differentiation value. Thank to the conductive property and higher Young's modulus of composite type due to the employment of PANi, satellite cells were induced into more matured form as analyzed by Real-Time PCR. On the other hand, grafting of composite nanofibrous electrospun scaffold with gelatin increased the surface stiffness directing satellite cells into lower cell proliferation and highest value of differentiation. Our results for first time showed the significant role of combination between conductivity, mechanical property and surface modification of PAN-PANi electrospun nanofibers and provid new insights into most biocompatible scaffolds for muscle tissue engineering. The schematic figure conveys the effective combination of conductive and surface stiffness on muscle tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app