Add like
Add dislike
Add to saved papers

Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice.

Acta Physiologica 2016 November
AIM: Skeletal muscle atrophy following prolonged immobilization (IM) is a catabolic state characterized by increased proteolysis and functional deterioration. Previous research indicates that discord of mitochondrial homoeostasis plays a critical role in muscle atrophy. We hypothesized that muscle IM would activate the ubiquitin-proteolysis, autophagy-lysosome (mitophagy) pathway, mitochondrial dynamics remodelling and apoptosis partially controlled by the FoxO signalling pathway.

METHODS: Female FVB/N mice were randomly divided into five groups (n = 8 each): control (CON), IM with banding of one of the hindlimbs for 1, 2 and 3 weeks (1w-, 2w- and 3w-IM) and 2w-IM followed by 1 week of remobilization (RM).

RESULTS: Mitochondrial density and DNA copies in tibialis anterior (TA) muscle were reduced by approx. 80% (P < 0.05 for 2w-IM; P < 0.01 for 3w-IM), along with activation of FoxO3a, atrogin-1 and MuRF1 following 2w- and 3w-IM (P < 0.01). Protein markers of autophagy/mitophagy, such as beclin 1 (approx. 2.7-fold; P < 0.01), LC3, ubiquitin-binding adaptor (approx. 1.47-fold; P < 0.01), Rheb (approx. 1.9-fold; P < 0.05) and parkin (approx. 70%; P < 0.05), were all increased by IM and remained activated after RM, whereas BNIP3 and PINK1 levels were decreased by IM (P < 0.05), but elevated upon RM (P < 0.01). IM decreased Mfn2 expression (approx. 50%; P < 0.01) and increased Fis-1 expression (approx. 2.4-fold; P < 0.05). Muscle apoptosis indicator Bax/Bcl2 ratio was elevated at 2w- to 3w-IM (approx. 3.7-fold; P < 0.01), whereas caspase-3 activity was five- to sixfold higher (P < 0.01) and remained threefold higher above CON (P < 0.05).

CONCLUSION: Our data indicate that IM-induced mitochondrial deterioration is associated with altered protein expressions in the autophagic/mitophagic pathway, more fragmented mitochondrial network and activation of apoptosis partly under the influence of FoxO3 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app