Add like
Add dislike
Add to saved papers

Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells.

Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β‑catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β‑catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β‑catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β‑catenin pathway, including the mRNA of c‑myc, cyclin D1, Lef1, Tcf7 and β‑catenin as well as β‑catenin protein. However, the upregulation of these genes and β‑catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled‑related protein, an antagonist of the Wnt/β‑catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP‑ and LiCl-promoted osteoblastic differentiation of BMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app