Add like
Add dislike
Add to saved papers

Preliminary Evaluation of a Novel Thermoplastic Mask System with Intra-fraction Motion Monitoring for Future Use with Image-Guided Gamma Knife.

Curēus 2016
UNLABELLED: OBJECTIVES : A non-invasive immobilization system consisting of a thermoplastic mask with image-guidance using cone-beam CT (CBCT) and infrared (IR) tracking has been developed to ensure minimal inter- and intra-fractional movement during Gamma Knife radiosurgery. Prior to clinical use for patients on a Gamma Knife, this study clinically evaluates the accuracy and stability of this novel immobilization system with image-guidance in patients treated with standard fractionated radiation therapy on a linear accelerator.

MATERIALS & METHODS: This prospective cohort study evaluated adult patients planned for fractionated brain radiotherapy. Patients were immobilized with a thermoplastic mask (with the nose cut out) and customized head cushion. A reflective marker was placed on the patient's nose tip and tracked with a stereoscopic IR camera throughout treatment. For each fraction, a pre-treatment, verification (after any translational correction for inter-fraction set-up variation), and post-treatment CBCT was acquired to evaluate inter- and intra-fraction movement of the target and nose. Intra-fraction motion of the nose tip measured on CBCT and IR tracking were compared. RESULTS : Corresponding data from 123 CBCT and IR datasets from six patients are summarized. The mean ± standard deviation (SD) intra-fraction motion of the nose tip was 0.41±0.36 mm based on pre- and post-treatment CBCT data compared with 0.56±0.51 mm using IR tracking. The maximum intra-fraction motion of the nose tip was 1.7 mm using CBCT and 3.2 mm using IR tracking. The mean ± SD intra-fraction motion of the target was 0.34±0.25 mm, and the maximum intra-fraction motion was 1.5 mm.

CONCLUSIONS: This initial clinical evaluation of the thermoplastic mask immobilization system using both IR tracking and CBCT demonstrate that mean intra-fraction motion of the nose and target is small. The presence of isolated measures of larger intra-fraction motion supports the need for image-guidance and intra-fraction motion management when using this mask-based immobilization system for radiosurgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app