JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Baseline Differences in Minor Lymphocyte Subpopulations may Predict Response to Fingolimod in Relapsing-Remitting Multiple Sclerosis Patients.

AIMS: Fingolimod, oral treatment for relapsing-remitting multiple sclerosis (RRMS), is an agonist of sphingosine and its metabolite S1P that binds their receptors, blocking the egress of lymphocytes from lymph nodes. The aim of this study was immunomonitoring of minor peripheral lymphocyte subpopulations in RRMS patients under treatment with fingolimod and correlation with treatment response.

METHODS: Prospective study. T- and B-cell subpopulations were analyzed using multiparametric flow cytometry in peripheral blood from 14 RRMS patients under treatment with fingolimod at baseline, +1, +3, +6, +9, and +12 months of follow-up. Response to therapy was assessed at month +12.

RESULTS: Most changes in minor lymphocyte subpopulations occurred in the first month of treatment and were maintained until the end of follow-up. The basal percentages of recent thymic emigrants (RTEs) and transitional B cells were lower in responder patients than in nonresponders. After 1 month of follow-up, the percentages of late effector memory CD4(+) T cells in peripheral blood were higher in responder patients.

CONCLUSION: If confirmed in a bigger cohort of patients, analysis of percentages of minor lymphocyte subpopulations in peripheral blood of patients with RRMS prior and after +1 month of treatment might predict clinical response to fingolimod.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app