JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3.

Journal of Virology 2016 June 16
UNLABELLED: The interferon (IFN)-mediated antiviral response is a central aspect of host defense; however, viruses have evolved multiple strategies to counteract IFN-mediated responses in order to successfully infect the host. Herpes simplex virus 1 (HSV-1), a typical human-restricted DNA virus, is capable of counteracting host immune responses via several distinct viral proteins, thus establishing a lifelong latent infection. In this study, we demonstrate that the VP24 protein, a serine protease of HSV-1 essential for the formation and maturation of capsids, is a novel antagonist of the beta interferon (IFN-β) pathway. Here, VP24 was shown for the first time to dampen interferon stimulatory DNA (ISD)-triggered IFN-β production and inhibit IFN-β promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) and by STING, respectively. Further study demonstrated that ectopic expression of VP24 selectively blocked IFN regulatory factor 3 (IRF3) but not NF-κB promoter activation. In addition, VP24 was demonstrated to downregulate ISD-induced phosphorylation and dimerization of IRF3 during HSV-1 infection with a VP24 stable knockdown human foreskin fibroblast cell line. The underlying molecular mechanism is that VP24 abrogates the interaction between TANK-binding kinase 1 (TBK1) and IRF3, hence impairing IRF3 activation. These results illustrate that VP24 is able to block the production of IFN-β by inhibiting IRF3 activation, which may represent a critical adaptation to enable viral effective replication within the host.

IMPORTANCE: This study demonstrated that HSV-1 protein VP24 could inhibit IFN-β production and promoter activation triggered by ISD, cGAS and STING and by STING, respectively. VP24 selectively blocked IRF3 promoter activation and ISD-induced phosphorylation and dimerization of IRF3 without affecting the NF-κB promoter activation during viral infection. VP24 also inhibited IRF3 activation by impeding the interaction between TBK1 and IRF3 during viral infection. This study provides new insights into the immune evasion mediated by HSV-1 and identifies VP24 as a crucial effector for HSV-1 to evade the host DNA-sensing signal pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app