JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multicompartmental Hollow-Fiber-Based Bioreactors for Dynamic Three-Dimensional Perfusion Culture.

The creation of larger-scale three-dimensional tissue constructs depends on proper medium mass and gas exchange, as well as removal of metabolites, which cannot be achieved in conventional static two-dimensional petri dish culture. In cultures of tissue-density this problem can be addressed by decentral perfusion through artificial micro-capillaries. While the static medium exchange in petri dishes leads to metabolite peaks, perfusion culture provides a dynamic medium supply, thereby preventing non-physiological peaks. To overcome the limitations of conventional static two-dimensional culture, a three-dimensional perfusion bioreactor technology has been developed, providing decentral and high-performance mass exchange as well as integral oxygenation. Similar to organ systems in vivo, the perfusion with medium provides nutrition and removes waste metabolites, and the perfusion with gas delivers oxygen and carbon dioxide for pH regulation. Such bioreactors are available at various dimensions ranging from 0.2 to 800 mL cell compartment volumes (manufactured by StemCell Systems, Berlin, Germany). Here, we describe in detail the setup and maintenance of a small-scale 4-chamber bioreactor with its tubing circuit and perfusion system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app