JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Translating bed total body irradiation lung shielding and dose optimization using asymmetric MLC apertures.

A revised translating bed total body irradiation (TBI) technique is developed for shielding organs at risk (lungs) to tolerance dose limits, and optimizing dose distribution in three dimensions (3D) using an asymmetrically-adjusted, dynamic multileaf collimator. We present a dosimetric comparison of this technique with a previously developed symmetric MLC-based TBI technique. An anthropomor-phic RANDO phantom is CT scanned with 3 mm slice thickness. Radiological depths (RD) are calculated on individual CT slices along the divergent ray lines. Asymmetric MLC apertures are defined every 9 mm over the phantom length in the craniocaudal direction. Individual asymmetric MLC leaf positions are optimized based on RD values of all slices for uniform dose distributions. Dose calculations are performed in the Eclipse treatment planning system over these optimized MLC apertures. Dose uniformity along midline of the RANDO phantom is within the confidence limit (CL) of 2.1% (with a confidence probability p = 0.065). The issue of over- and underdose at the interfaces that is observed when symmetric MLC apertures are used is reduced from more than ± 4% to less than ± 1.5% with asymmetric MLC apertures. Lungs are shielded by 20%, 30%, and 40% of the prescribed dose by adjusting the MLC apertures. Dose-volume histogram analysis confirms that the revised technique provides effective lung shielding, as well as a homogeneous dose coverage to the whole body. The asymmetric technique also reduces hot and cold spots at lung-tissue interfaces compared to previous symmetric MLC-based TBI technique. MLC-based shielding of OARs eliminates the need to fabricate and setup cumbersome patient-specific physical blocks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app