Add like
Add dislike
Add to saved papers

Comprehensive patient-specific information preprocessing for cardiac surgery simulations.

PURPOSE: Patient-specific biomechanical simulations of the behavior of soft tissue gain importance in current surgery assistance systems as they can provide surgeons with valuable ancillary information for diagnosis and therapy. In this work, we aim at supporting minimally invasive mitral valve reconstruction (MVR) surgery by providing scenario setups for FEM-based soft tissue simulations, which simulate the behavior of the patient-individual mitral valve subject to natural forces during the cardiac cycle after an MVR. However, due to the complexity of these simulations and of their underlying mathematical models, it is difficult for non-engineers to sufficiently understand and adequately interpret all relevant modeling and simulation aspects. In particular, it is challenging to set up such simulations in automated preprocessing workflows such that they are both patient-specific and still maximally comprehensive with respect to the model.

METHODS: In this paper, we address this issue and present a fully automated chain of preprocessing operators for setting up comprehensive, patient-specific biomechanical models on the basis of patient-individual medical data. These models are suitable for FEM-based MVR surgery simulation. The preprocessing methods are integrated into the framework of the Medical Simulation Markup Language and allow for automated information processing in a data-driven pipeline.

RESULTS: We constructed a workflow for holistic, patient-individual information preprocessing for MVR surgery simulations. In particular, we show how simulation preprocessing can be both fully automated and still patient-specific, when using a series of dedicated MVR data analytics operators. The outcome of our operator chain is visualized in order to help the surgeon understand the model setup.

CONCLUSION: With this work, we expect to improve the usability of simulation-based MVR surgery assistance, through allowing for fully automated, patient-specific simulation setups. Combined visualization of the biomechanical model setup and of the corresponding surgery simulation results fosters the understandability and transparency of our assistance environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app