JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Accessing the molecular interactions of phthalates and their primary metabolites with the human pregnane X receptor using in silico profiling.

Phthalates are known to cause endocrine disruption in humans and animals. Being lipophilic xenobiotic chemicals, phthalates from the surrounding environments can easily be absorbed into the biological system, thereby causing various health dysfunctions. This molecular docking study evaluates a variety of molecular interactions of 12 commonly used diphthalates and respective monophthalates onto the ligand binding domain (LBD) of the human pregnane X receptor (hPXR), a xenosensor, which would be beneficial for further in vitro and in vivo studies on hazardous phthalates. Out of 12 diphthalates and their monophthalates tested, diisodecyl phthalate (-9.16 kcal mol-1 ) showed more affinity toward hPXR whereas diisononyl phthalate (-8.77) and di(2-ethyhexyl)phthalate (-8.56), the predominant plasticizers found in a variety of plastics and allied products, showed comparable binding scores with that of the control ligands such as hyperforine (-9.99) and dexamethasone (-7.36). In addition to the above diphthalates, some of their monophthalates (monoisodecyl phthalate, mono-2-etheylhexyl phthalate, etc.) also established similar interactions with certain crucial amino acids in the LBD, which led to higher G scores. In fact, bisphenol A, a well-studied and proven endocrine disruptor, showed lesser G scores (-6.69) than certain phthalates. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app