JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

17β-Hydroxy-18-acetoxywithanolides from Aeroponically Grown Physalis crassifolia and Their Potent and Selective Cytotoxicity for Prostate Cancer Cells.

When cultivated under aeroponic growth conditions, Physalis crassifolia produced 11 new withanolides (1-11) and seven known withanolides (12-18) including those obtained from the wild-crafted plant. The structures of the new withanolides were elucidated by the application of spectroscopic techniques, and the known withanolides were identified by comparison of their spectroscopic data with those reported. Withanolides 1-11 and 16 were evaluated for their potential anticancer activity using five tumor cell lines. Of these, the 17β-hydroxy-18-acetoxywithanolides 1, 2, 6, 7, and 16 showed potent antiproliferative activity, with some having selectivity for prostate adenocarcinoma (LNCaP and PC-3M) compared to the breast adenocarcinoma (MCF-7), non-small-cell lung cancer (NCI-H460), and CNS glioma (SF-268) cell lines used. The cytotoxicity data obtained for 12-15, 17, and 19 have provided additional structure-activity relationship information for the 17β-hydroxy-18-acetoxywithanolides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app