Add like
Add dislike
Add to saved papers

EEG Findings May Serve as a Potential Biomarker for Anti-NMDA Receptor Encephalitis.

Objective To determine if an electroencephalographic (EEG) characteristic, beta:delta power ratio (BDPR), is significantly higher for N-methyl-d-aspartate receptor encephalitis (NMDARE) patients than for non-NMDARE patients on presenting EEG. Identification of an additional EEG biomarker with significant specificity for NMDARE (in the absence of frank delta brush) could potentially allow for early identification of at-risk patients. Methods Single center retrospective comparison of NMDARE and non-NMDARE consecutive cases of encephalitis, collated over a 6-year period (from 2008 to 2014). Results None of the 10 NMDARE patients displayed the extreme delta brush pattern on EEG previously described, but the ratio of BDPR was significantly higher for NMDARE patients (P < .005). There was no significant relationship between BDPR and the time of recording from symptom onset. Additional analysis of clinical characteristics also indicated that the patients with NMDARE (median age 19.5 years) were younger than the 5 patients with non-NMDARE (median age 36 years). Encephalopathy, seizure, and psychiatric complaints were the most common diagnoses at time of first health care presentation and did not favor a single etiology, though the latter was present only in the NMDARE population (50% at T0 ). Prodromal illness featuring headache was more common in the non-NMDARE population. Outcomes, as measured by the Modified Rankin Scale, were globally better in the NMDARE group. Conclusions Patients with NMDARE had a significantly higher BDPR on EEG when compared with non-NMDARE patients even in the absence of extreme delta brush. This suggests that early EEG characteristics may be helpful in distinguishing NMDARE from non-NMDARE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app