JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4).

Active efflux of both drugs and organic anion metabolites is mediated by the multidrug resistance proteins (MRPs). MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), and MRP4 (ABCC4) have partially overlapping substrate specificities and all transport 17β-estradiol 17-(β-d-glucuronide) (E217βG). The cysteinyl leukotriene receptor 1 (CysLT1R) antagonist MK-571 inhibits all four MRP homologs, but little is known about the modulatory effects of newer leukotriene modifiers (LTMs). Here we examined the effects of seven CysLT1R- and CysLT2R-selective LTMs on E217βG uptake into MRP1-4-enriched inside-out membrane vesicles. Their effects on uptake of an additional physiologic solute were also measured for MRP1 [leukotriene C4 (LTC4)] and MRP4 [prostaglandin E2 (PGE2)]. The two CysLT2R-selective LTMs studied were generally more potent inhibitors than CysLT1R-selective LTMs, but neither class of antagonists showed any MRP selectivity. For E217βG uptake, LTM IC50s ranged from 1.2 to 26.9 μM and were most comparable for MRP1 and MRP4. The LTM rank order inhibitory potencies for E217βG versus LTC4 uptake by MRP1, and E217βG versus PGE2 uptake by MRP4, were also similar. Three of four CysLT1R-selective LTMs also stimulated MRP2 (but not MRP3) transport and thus exerted a concentration-dependent biphasic effect on MRP2. The fourth CysLT1R antagonist, LY171883, only stimulated MRP2 (and MRP3) transport but none of the MRPs were stimulated by either CysLT2R-selective LTM. We conclude that, in contrast to their CysLTR selectivity, CysLTR antagonists show no MRP homolog selectivity, and data should be interpreted cautiously if obtained from LTMs in systems in which more than one MRP is present.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app