Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry.

HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app