Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats.

Repeated exposure to sub-anesthetic doses of ketamine in rats has been shown to induce cognitive deficits, as well as behavioral changes akin to the negative symptoms of schizophrenia, giving much face validity to the use of ketamine administration as a pharmacological model of schizophrenia. This study sought to further characterize the behavioral effects of two different ketamine pre-treatment regimens, focusing primarily on the effects of repeated ketamine administration on novelty processing, a capacity that is disrupted in schizophrenia. Rats received 5 or 14 intra-peritoneal injections of 30mg/kg ketamine or saline across 5 or 7days, respectively. They were then tested in an associative mismatch detection task to examine their ability to detect novel configurations of familiar audio-visual sequences. Furthermore, rats underwent a sequential novel object and novel object location exploration task. Subsequently, rats were also tested on the delayed matching to place T-maze task, sucrose preference task and locomotor tests involving administering a challenge dose of amphetamine (AMPH). The high-dose ketamine pre-treatment regimen elicited impairments in mismatch detection and working memory. In contrast, the low-dose ketamine pre-treatment regimen improved performance of novelty detection. In addition, low-dose ketamine pre-treated rats showed locomotor sensitization following an AMPH challenge, while the high-dose ketamine pre-treated rats showed an attenuated locomotor response to AMPH, compared to control rats. These findings demonstrate that different regimens of repeated ketamine administration induce alterations in novelty processing in opposite directions, and that differential neural adaptations occurring in the mesolimbic dopamine system may underlie these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app