Add like
Add dislike
Add to saved papers

Light-dependent activation of phosphoenolpyruvate carboxylase by reversible phosphorylation in cluster roots of white lupin plants: diurnal control in response to photosynthate supply.

Annals of Botany 2016 April 11
BACKGROUND AND AIMS: Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that controls carbohydrate partitioning to organic acid anions (malate, citrate) excreted in copious amounts by cluster roots of inorganic phosphate (Pi)-deprived white lupin plants. Excreted malate and citrate solubilize otherwise inaccessible sources of mineralized soil Pi for plant uptake. The aim of this study was to test the hypotheses that (1) PEPC is post-translationally activated by reversible phosphorylation in cluster roots of illuminated white lupin plants, and (2) light-dependent phosphorylation of cluster root PEPC is associated with elevated intracellular levels of sucrose and its signalling metabolite, trehalose-6-phosphate.

METHODS: White lupin plants were cultivated hydroponically at low Pi levels (≤1 µm) and subjected to various light/dark pretreatments. Cluster root PEPC activity andin vivophosphorylation status were analysed to assess the enzyme's diurnal, post-translational control in response to light and dark. Levels of various metabolites, including sucrose and trehalose-6-phosphate, were also quantified in cluster root extracts using enzymatic and spectrometric methods.

KEY RESULTS: During the daytime the cluster root PEPC was activated by phosphorylation at its conserved N- terminal seryl residue. Darkness triggered a progressive reduction in PEPC phosphorylation to undetectable levels, and this was correlated with 75-80 % decreases in concentrations of sucrose and trehalose-6- phosphate.

CONCLUSIONS: Reversible, light-dependent regulatory PEPC phosphorylation occurs in cluster roots of Pi-deprived white lupin plants. This likely facilitates the well-documented light- and sucrose-dependent exudation of Pi-solubilizing organic acid anions by the cluster roots. PEPC'sin vivophosphorylation status appears to be modulated by sucrose translocated from CO2-fixing leaves into the non-photosynthetic cluster roots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app