JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Paraoxonases, mitochondrial dysfunction and non-communicable diseases.

The most common non-communicable diseases (NCD) are obesity, cardiovascular disease, diabetes, cancer, chronic respiratory diseases, and neurological diseases. Together, they constitute the commonest cause of death and disability worldwide. Mitochondrial alterations, oxidative stress and inflammation underpin NCD and are molecular mechanisms playing major roles in the disease onset and natural history. Interrelations between the mechanisms of oxidative stress, inflammation and metabolism are, in the broadest sense of energy transformations, being increasingly recognized as part of the problem in NCD. Whether or not oxidative stress and inflammation are the causes or the consequences of cellular disturbances, they do significantly contribute to NCD. Paraoxonases are associated with mitochondria and mitochondria-associated membranes. They modulate mitochondria-dependent superoxide production, and prevent apoptosis. Their overexpression protects mitochondria from endoplasmic reticulum stress and subsequent mitochondrial dysfunction; highlighting that the anti-inflammatory effects of paraoxonases may be mediated, at least in part, by their protective role in mitochondria and associated organelle function. Since oxidative stress is implicated in the development of NCD (as a result of mitochondrial dysfunction), these data suggest that understanding the role and the molecular targets of paraoxonases may provide novel strategies of intervention in the treatment of these important diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app