Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.

Microfluidics forms the basis of unique experimental approaches that visualize the development of neural structure using micro-scale devices and aids the guidance of neurite growth in an axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stems cells (hESC). We cocultured hESC with PA6 stromal cells and isolated neural rosette-like structures, which subsequently formed neurospheres in a suspension culture. We found that Tuj1-positive neural cells but not nestin-positive neural precursor cells (NPC) were able to enter the microfluidics grooves (microchannels), suggesting a neural cell-migratory capacity that was dependent on neuronal differentiation. We also showed that bundles of axons formed and extended into the microchannels.Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app