JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells.

FEBS Journal 2016 June
Altered mitochondrial metabolism plays a pivotal role in the development and progression of various diseases, including cancer. Cell lines are frequently used as models to study mitochondrial (dys)function, but little is known about their mitochondrial respiration and metabolic properties in comparison to the primary tissue of origin. We have developed a method for assessment of oxidative phosphorylation in prostate tissue samples of only 2 mg wet weight using high-resolution respirometry. Reliable protocols were established to investigate the respiratory activity of different segments of the mitochondrial electron transfer system (ETS) in mechanically permeabilized tissue biopsies. Additionally, the widely used immortalized prostate epithelial and fibroblast cell lines, RWPE1 and NAF, representing the major cell types in prostate tissue, were analyzed and compared to the tissue of origin. Our results show that mechanical treatment without chemical permeabilization agents or sample processing constitutes a reliable preparation method for OXPHOS analysis in small amounts of prostatic tissue typically obtained by prostate biopsy. The cell lines represented the bioenergetic properties of fresh tissue to a limited extent only. Particularly, tissue showed a higher oxidative capacity with succinate and glutamate, whereas pyruvate was a substrate supporting significantly higher respiratory activities in cell lines. Several fold higher zinc levels measured in tissue compared to cells confirmed the role of aconitase for prostate-specific metabolism in agreement with observed respiratory properties. In conclusion, combining the flexibility of cell culture models and tissue samples for respirometric analysis are powerful tools for investigation of mitochondrial function and tissue-specific metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app