Add like
Add dislike
Add to saved papers

Toll-like receptor 3 mediates PROMININ-1 expressing cell expansion in biliary atresia via Transforming Growth Factor-Beta.

BACKGROUND: In biliary atresia (BA), epithelial-mesenchymal hepatic progenitor cells (HPC) expressing the stem/progenitor cell marker PROMININ-1 (PROM1) undergo expansion and subsequent transdifferentiation into collagen-producing myofibroblasts within regions of evolving biliary fibrosis under the regulation of Transforming Growth Factor-β (TGFβ) signaling. We hypothesized that pro-inflammatory Toll-like Receptor-3 (TLR3) signal activation promotes the differentiation of PROM1+ HPC via TGFβ pathway activation in vitro.

METHODS: PROM1+ Mat1a(-/-) HPC were treated with a double-stranded RNA analog, polyionosinic-polycytidylic acid (Poly I:C), ± small molecule inhibitors nafamostat, or SB431542.

RESULTS: Poly I:C induced myofibroblastic-like morphologic changes, degradation of IκB-α consistent with TLR3-NFκB activation, a 15-fold increase in the expression of Vimentin, a 9-fold increase in Collagen-1a, a 4.6-fold increase in Snail at 24h (p<0.05), and an 8.2-fold increase in Prom1 at 72h (p<0.0001) by qPCR. Immunofluorescence demonstrated nuclear phosphorylated SMAD3, TLR3, and COLLAGEN-1α staining following Poly I:C treatment. Degradation of IκBα was inhibited by nafamostat. Co-treatment with either nafamostat or SB431542 blocked the morphologic change and abrogated the increased expression of Cd133, Collagen, Vimentin, and Snail1.

CONCLUSIONS: TLR3 activation induces myofibroblastic differentiation of PROM1+ HPC in part via TGFβ pathway activation to promote BA-associated biliary fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app