Add like
Add dislike
Add to saved papers

A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli.

An efficient method was introduced for soluble expression of recombinant laccase (rpCotA(SL-1)) from a newly isolated halo-thermotolerant Bacillus sp. SL-1 in modified Escherichia coli, trxB2/gor2 mutant (Origami™ B (DE3)). The yield of purified soluble laccase in Origami strain under micro-aerobic condition was ∼20mg/L of bacterial culture, showing significant improvement over the laccase produced in E.coli BL21 strain under aerobic condition. The specific activity of 13U/mg for purified laccase produced in micro-aerobic condition was higher than that of 1.07U/mg observed for the purified enzyme obtained in aerobic condition in Origami. The kinetic Km and kcat parameters for laccase-induced oxidation reactions were 46μM and 23s(-1) for ABTS (2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), and 19.6μM and 24s(-1) for SGZ (syringaldazine) substrates, respectively. The rpCotA(SL-1) displayed thermostability at 70°C and tolerance to specified concentrations of NaCl, NaN3, EDTA and SDS as inhibitors. The enzyme was relatively stable in the presence of different concentration of organic solvents, however the residual activity was adversely affected as the dipole moment of the solvents increase. Here we successfully report the production of soluble and functional laccase in Origami at the expression level suitable for industrial application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app