JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Growing evidence suggests WT1 effects in the kidney development are modulated by Hsp70/NO interaction.

Journal of Nephrology 2017 Februrary
The study of kidney development at the cellular and molecular levels remains an active area of nephrology research. The functional integrity of the kidney depends on normal development as well as on physiological cell turnover. Apoptosis induction is essential for these mechanisms. A route to cell death revealed in the past decade shows that heat shock proteins (HSPs) and their cofactors are responsible for regulating the apoptotic pathway. Specifically, heat shock protein 70 (Hsp70), the most ubiquitous and highly conserved HSP, helps proteins adopt native conformation or regain function after misfolding. Hsp70 is an important cofactor for the function of Wilms' tumour 1 (WT1) and suggests a potential role for this chaperone during kidney differentiation. In addition, we have demonstrated that WT1 expression is modulated by nitric oxide (NO) availability and Hsp70 interaction after neonatal unilateral ureteral obstruction. NO has been identified as playing an important role in the developing kidney. These findings suggest that Hsp70 and NO may play a critical and fundamental role in the capacity to modulate both apoptotic pathway and oxidative stress during kidney development. Furthermore, the design of experimental protocols that assess renal epithelial functionality in this context, could contribute to the understanding of renal development and alterations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app