Add like
Add dislike
Add to saved papers

Evaluation of Bax and Bcl-2 Proteins Expression in the Rat Hippocampus due to Childhood Febrile Seizure.

OBJECTIVE: Simple Febrile Seizure (SFS) is the most common seizure disorder in childhood, and is frequently described as inoffensive disorder. Nevertheless, there is evidence suggesting the association between neonatal febrile seizures and hippocampal abnormalities in adulthood. This study was conducted at evaluating the hippocampal expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins following SFS induction in rat neonates.

MATERIALS & METHODS: Febrile seizure was modeled by hyperthermia-induced seizure in 22-dayold male rats by a hot water bath. The animals were divided into two groups based on the presence or absence of seizure behaviors: Hyperthermia without seizure (n=10) and hyperthermia with seizure (n=10). To control the effects of environmental stress a sham-control group was also added (n=10). The rats' hippocampi were dissected 2 or 15 days after hyperthermia. The expression of Bax and Bcl-2 proteins were measured using Western Blotting technique.

RESULTS: The hippocampal expression of Bcl-2 protein was significantly lower in the hyperthermia with seizure animals than that of the sham-control and hyperthermia without seizure groups. The expression of pro-apoptotic Bax protein also significantly increased in the hippocampus of hyperthermia with seizure group rats compared to the sham-control and hyperthermia without seizure animals.

CONCLUSION: The simple febrile seizure markedly disturbed the hippocampal expression of both Bcl2 and Bax proteins, resulting in apoptosis promotion in hippocampi of juvenile rats, which were measurable for at least 15 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app