JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dielectric Relaxation Time of Ice-Ih with Different Preparation.

Dielectric relaxation process of ice-Ih has been investigated by many researchers. Pioneering studies focused on the temperature dependence of the dielectric relaxation time, τice, were reported by Auty in 1952 [ Auty, R. P.; Cole, R. H. J. Chem. Phys . 1952 , 120 , 1309 ] and Johari in 1981 [ Johari, G. P.; Whalley, E. J. Chem. Phys. 1981 , 75 , 1333 ]. However, the temperature dependences of τice found in these studies are not in agreement. While Auty et al. reported a single Arrhenius temperature dependence of τice for the entire 207-273 K temperature range, Johari et al. reported changes in the temperature dependence of τice at 230 and 140 K. In this study, the temperature dependence of τice is investigated by broadband dielectric spectroscopy for ice prepared by three different procedures. For all investigated ices, a dielectric relaxation process is observed, and τice decreases with increasing temperature. Temperature dependence of τice with rapid crystallization shows the same properties at temperatures down to 140 K as that reported by Johari et al. On the other hand, ice obtained by slow crystallization exhibits the same temperature dependence of τice as those reported by Auty et al. We suggest that the difference between the temperature dependences of τice found by Auty et al. and Johari et al. can be controlled by preparation conditions. That is, the growth rate of the ice crystal can affect τice because a slow growth speed of the ice crystal induces a smaller impurity content of ice, giving rise to an Arrhenius temperature dependence of τice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app